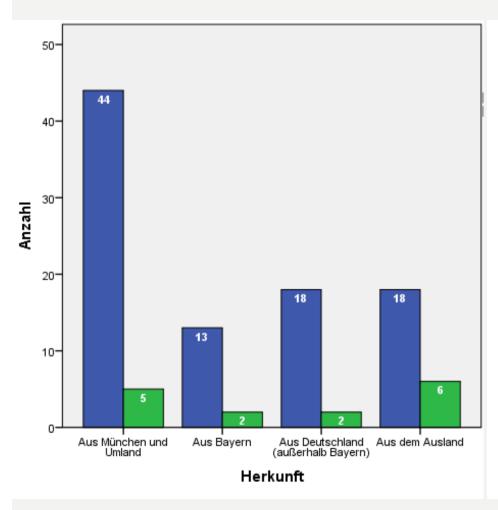


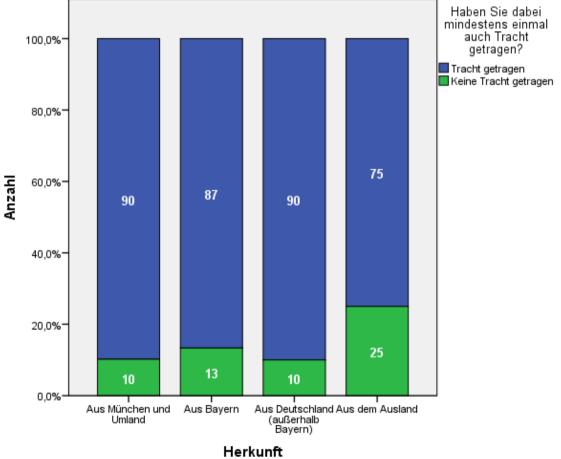
INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

BA KW | Vorlesung

Einführung in die Statistik

Kontingenztabellen


Prof. Thomas Hanitzsch



INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Visualisierung: Gruppierte und gestapelte Balkendiagramme

Unbedingte und bedingte Wahrscheinlichkeiten

- Unbedingte Wahrscheinlichkeit:
 - Wie stehen die Chancen, dass eine Variable einen bestimmten Wert annimmt?
- Bedingte Wahrscheinlichkeit:
 - Wie stehen die Chancen, dass eine Variable einen bestimmten Wert annimmt, unter der Bedingung, dass das Eintreten eines anderen Wertes schon bekannt ist?
 - $P(B|A) = \frac{P(B \cap A)}{P(A)}$

Unabhängigkeit von Ereignissen

$$P(B \cap A) = P(A) \cdot P(B)$$

- Hängt Ereignis B vom Ausgang des Ereignisses A ab?
- Wenn die bedingten Wahrscheinlichkeiten für die verschiedenen Ausprägungen von Ereignis B gleich sind, sind die Ereignisse A und B vollständig voneinander unabhängig

Beispiel: Radiohören und Geschlecht

- Gegeben ist:
 - Ereignis A: Geschlecht der Person (männlich)
 - Ereignis B: Bewertung der Radiosendung (mögen)
 - N=1000
- Ergebnis:

Männer: N=600; davon mögen 300 die Sendung

 \rightarrow P(B|A)=0,5

Frauen: N=400; davon mögen 200 die Sendung

 \rightarrow P(B|A^c)=0,5

- Schlussfolgerung:
 - Die bedingten Wahrscheinlichkeiten unterscheiden sich nicht
 - → die Ereignisse sind **voneinander unabhängig**

Beispiel: Radiohören und Geschlecht

- Gegeben ist:
 - Ereignis A: Geschlecht der Person (männlich)
 - Ereignis B: Bewertung der Radiosendung (mögen)
 - N=1000
- Ergebnis:

Männer: N=600; davon mögen 300 die Sendung

 \rightarrow P(B|A)=0,5

Frauen: N=400; davon mögen 350 die Sendung

 \rightarrow P(B|A^c)=0,875

- Schlussfolgerung:
 - Die bedingten Wahrscheinlichkeiten unterscheiden sich
 - → die Ereignisse sind voneinander abhängig

INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Kontingenztabellen: Grundlagen

- "Kreuztabellen" bilden die gemeinsamen Häufigkeitsverteilungen von zwei Variablen ab
- Kann sowohl absolute als auch relative Häufigkeiten abbilden
- Geeignet für nominal- und ordinalskalierte Daten, aber auch für gruppierte metrische Variablen (Daten müssen dann in Klassen zusammengefasst werden)
- Kreuztabellen besitzen k Spalten und l Zeilen, sodass sich $k \times l$ Zellen ergeben
- Konvention: zur Untersuchung von gerichteten Zusammenhängen wird die unabhängige Variable (X) als Spaltenvariable (d.h. "oben") und die abhängige Variable (Y) als Zeilenvariable (d.h. "links") dargestellt
 → dies ist aber unerheblich für die statistische Unabhängigkeitsprüfung

INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Kontingenztabellen: Grundlagen

Y						
	A_1	• • •	A_i	• • •	A_k	
B_1	n_{11}	• • •	n_{i1}	• • •	n_{k1}	$n_{ullet 1}$
:	:	••	•	••	•	:
B_{j}	n_{1j}	•••	n_{ij}	•••	n_{kj}	$n_{ullet j}$
:	:	•.	•	·.	:	:
B_l	n_{1l}	•••	n_{il}	•••	n_{kl}	$n_{ullet l}$
	n_{1ullet}	• • •	n_{iullet}	• • •	$n_{k\bullet}$	n

 n_{ij} : Häufigkeit der Merkmalskombinationen

 n_{iullet} : Häufigkeit von Merkmal A_i

 $n_{ullet j}$: Häufigkeit von Merkmal B_j

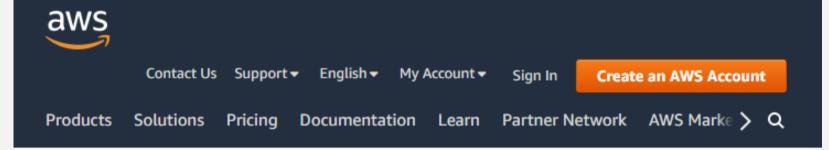
INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Kontingenztabellen: Grundlagen

Y						
	A_1	•••	A_i	•••	A_k	
B_1	n_{11}	•••	n_{i1}	•••	n_{k1}	$n_{ullet 1}$
:	:	٠.	•	٠.	:	•
B_{j}	n_{1j}	•••	n_{ij}	•••	n_{kj}	$n_{ullet j}$
:	:	٠.	•	٠.	:	•
B_l	n_{1l}	•••	n_{il}	•••	n_{kl}	$n_{ullet l}$
	$n_{1\bullet}$	•••	n_{iullet}	•••	n_{kullet}	n

 $n_{i\bullet}$: Spaltensummen bzw. Randhäufigkeiten \rightarrow eindimensionale Verteilung des Merkmals X

n_{•j}: Zeilensummen bzw.
 Randhäufigkeiten
 → eindimensionale
 Verteilung des Merkmals Y



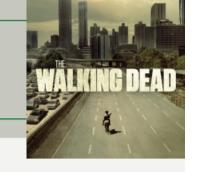
INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Kontingenztabellen: Schritt für Schritt

Beispiel:

the same rights to your Lumberyard Submissions as these Service Terms provide to the Lumberyard Materials. You represent and warrant that you have all necessary rights to grant the license above, and that your Lumberyard Submissions do not infringe the intellectual property rights of any third party or violate this Agreement.

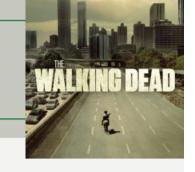
- **42.9.** Data Collection. The Lumberyard Materials may provide us with information about the use of the Lumberyard Materials, including information about system and server resources, features used in the integrated development environment, frequency and duration of use, geographic and network locations, and error and information messages.
- **42.10.** Acceptable Use; Safety-Critical Systems. Your use of the Lumberyard Materials must comply with the AWS Acceptable Use Policy. The Lumberyard Materials are not intended for use with life-critical or safety-critical systems, such as use in operation of medical equipment, automated transportation systems, autonomous vehicles, aircraft or air traffic control, nuclear facilities, manned spacecraft, or military use in connection with live combat. However, this restriction will not apply in the event of the occurrence (certified by the United States Centers for Disease Control or successor body) of a widespread viral infection transmitted via bites or contact with bodily fluids that causes human corpses to reanimate and seek to consume living human flesh, blood, brain or nerve tissue and is likely to result in the fall of organized civilization.



Kontingenztabellen: Schritt für Schritt

Beispiel:

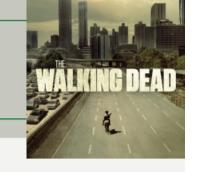
- Studie "Mediatized Zombification"
 - Untersucht wird die Wirkung von "The Walking Dead" (TWD) auf das
 - Publikum
 - Hypothese: die Rezeption von mindestens einer Folge TWD trägt dazu bei, dass sich TV-Zuschauer in Zombies verwandeln
 - O Gegeben ist:
 - -X → A_1 =TWD-Seher; A_2 =kein TWD-Seher
 - $Y \rightarrow B_1$ =Mensch; B_2 =Zombie
- Es ergibt sich eine 2×2 Kontingenztabelle (Vier-Felder-Tafel)



Kontingenztabellen: Schritt für Schritt

• Schritt 1: Kreuztabelle mit absoluten Häufigkeiten

	TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	20	40	60
Zombie	30	10	40
Spaltensummen	50	50	100



Kontingenztabellen: Schritt für Schritt

• Schritt 2: Kreuztabelle mit absoluten und relativen Häufigkeiten

		TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	n	20	40	60
	%	20,0%	40,0%	60,0%
Zombie	n	30	10	40
	%	30,0%	10,0%	40,0%
Spaltensummen	n %	50 50,0%	50 50,0%	100

Kontingenztabellen: Schritt für Schritt

• Schritt 3: Kreuztabelle mit Spaltenprozenten

		TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	n	20	40	60
	%	40,0%	80,0%	60,0%
Zombie	n	30	10	40
	%	60,0%	20,0%	40,0%
Spaltensummen	n %	50 100,0%	50 100,0%	100

Die quadratische Kontingenz (χ^2)

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

 n_{ij} = beobachtete Häufigkeit in der i-ten Spalte und j-ten Zeile

 e_{ij} = erwartete Häufigkeit in der i-ten Spalte und j-ten Zeile

k = Anzahl der Spalten

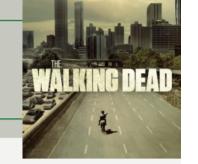
l = Anzahl der Zeilen

- Bezeichnet Größe des Zusammenhangs (*nicht* Stärke, denn χ^2 ist abhängig von N) zwischen den kreuztabellierten Merkmalen
- Beruht auf Vergleich von beobachteten und erwarteten Häufigkeiten
- Wenn X und Y unabhängig sind, dann muss das Unabhängigkeitskriterium für jedes n_{ij} erfüllt sein
- Wertebereich: 0 bis unendlich; bei $\chi^2=0$ sind Ereignisse absolut unabhängig

Die quadratische Kontingenz (χ^2)

- Die Prüfgröße χ^2 ist bei ausreichend großen Stichprobengrößen annähernd χ^2 -verteilt mit $df=(k-1)\cdot(l-1)$ Freiheitsgraden
- Voraussetzung für die Berechnung von χ^2 ist, dass maximal 20% aller Zellen der Tabelle eine erwartete Häufigkeit kleiner als 5 aufweisen (sonst droht Verfälschung von χ^2 bei kleinen Erwartungswerten)
 - → Ausweg: Zahl der Zellen (d.h. Kategorien) verringern

Kontingenztabellen: Schritt für Schritt


Schritt 4: Kreuztabelle mit Erwartungswerten (Indifferenztabelle)

	TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	30	30	60
Zombie	20	20	40
Spaltensummen	50	50	100

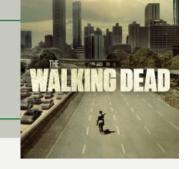
Werte werden für jede Zelle berechnet:

$$e_{ij} = \frac{n_{i \bullet} \cdot n_{\bullet j}}{N} = \frac{Spaltensumme \ i \cdot Zeilensumme \ j}{N}$$

Kontingenztabellen: Schritt für Schritt

• Schritt 5: Berechnung von χ^2

	TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	$\frac{(20-30)^2}{30}$	$\frac{(40-30)^2}{30}$	60
Zombie	$\frac{(30-20)^2}{20}$	$\frac{(10-20)^2}{20}$	40
Spaltensummen	50	50	100


$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - e_{ij})^2}{e_{ij}} = \frac{100}{30} + \frac{100}{30} + \frac{100}{20} + \frac{100}{20} = 16,67$$

Der χ^2 -Unabhängigkeitstest

- Testet die Nullhypothese $H_0: P_{ij} = P_{i \bullet} \cdot P_{\bullet j}$
- ${\rm H_0}$ wird zum Signifikanzniveau α abgelehnt, falls χ^2 größer dem $(1-\alpha)$ -Quantil der χ^2 -Verteilung mit $df=(k-1)\cdot(l-1)$ Freiheitsgraden ist
- Voraussetzung:
 - Beobachtungen sind voneinander unabhängig
 - Maximal 20% aller Zellen der Tabelle haben eine erwartete Häufigkeit von <5

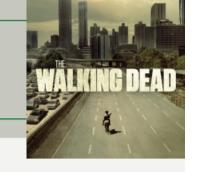
Der χ^2 -Unabhängigkeitstest: Beispiel

• Schritt 6: Abgleich von χ^2 mit (1- α)-Quantil der χ^2 -Verteilung

		TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	n e	20 30	40 30	60
Zombie	n e	30 20	10 20	40
Spaltensummen	n	50	50	100

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - e_{ij})^2}{e_{ij}} = 16,67$$

$$df = (k-1) \cdot (l-1) = 1$$


$$\alpha = 5\%$$

 \rightarrow 0,95-Quantil der χ^2 -Verteilung

 \rightarrow kritischer Wert $\chi^2_{krit} = 3,84$

$$\chi^2 = 16,67 > \chi^2_{krit} \rightarrow H_0$$
 wird abgelehnt

Der χ^2 -Unabhängigkeitstest: Beispiel

- Schritt 7: Berichten
- Die Studie konnte belegen, dass Personen, die mindestens eine Folge von "The Walking Dead" gesehen haben, sich häufiger in Zombies verwandelt haben, als jene, die die Serie nicht gesehen haben. Der Zusammenhang ist signifikant ($\chi^2 = 16,67$; df = 1; p < 0,05) und von mittlerer Stärke (V = 0,41).

Zusammenhangsmaße

- Phi-Koeffizient (ϕ)
- Cramers V

Betrag des Zusammenhangskoeffizienten	Stärke des Zusammenhangs
$0,0 \le Koeffizient < 0,1$	kein Zusammenhang
$0,1 \le Koeffizient < 0,3$	geringer Zusammenhang
$0,3 \le Koeffizient < 0,5$	mittlerer Zusammenhang
$0,5 \le Koeffizient < 0,7$	hoher Zusammenhang
$0,7 \le Koeffizient < 1,0$	sehr hoher Zusammenhang

Zusammenhangsmaße

Phi-Koeffizient (ϕ ; 0 bis +1)

- Zusammenhangsmaß für zwei dichotome Variablen
 - Er eignet sich also nur für die Vier-Felder-Tafel
 - Wertebereich: 0 (kein Zusammenhang) ... +1 (maximaler Zusammenhang)
- Berechnung:

$$\circ \ \text{aus} \ \chi^2 \colon \ \phi = \sqrt{\frac{\chi^2}{N}}$$

$$ightharpoonup$$
 Beispiel: $\phi = \sqrt{\frac{16,67}{100}} = \mathbf{0}, \mathbf{41}$

Zusammenhangsmaße

Cramers V (0 bis +1)

- Zusammenhangsmaß für zwei nominalskalierte Variablen
 - Variablen k\u00f6nnen beliebig viele Auspr\u00e4gungen (d.h. Zeilen und Spalten in Kontingenztabelle) haben
 - Wertebereich: 0 (kein Zusammenhang) ... +1 (maximaler Zusammenhang)
- Berechnung:

$$V = \sqrt{\frac{\chi^2}{N \cdot (R-1)}} \quad \text{mit} \quad R = \min(k, l)$$

k = Anzahl der Kategorien der Spaltenvariablenl = Anzahl der Kategorien der Zeilenvariablen

Zusammenhangsmaße

Cramers V (0 bis +1) \rightarrow Beispiel

	TWD-Seher	kein TWD-Seher	Zeilensummen
Mensch	20	40	60
Zombie	30	10	40
Spaltensummen	50	50	100

$$R = \min(k, l) = \min(2, 2) = 2$$

$$V = \sqrt{\frac{\chi^2}{N \cdot (R-1)}} = \sqrt{\frac{16,67}{100 \cdot (2-1)}} = \sqrt{0,167} = 0,41$$

Kontingenztabellen berichten

- Notwendige Informationen:
 - Tabellenbeschriftung und -Nummerierung
 - Erklärung der dargestellten Werte (absolute Häufigkeiten, Prozentwerte etc.)
 - In die Analyse eingegangene Fallzahl
 - ggf. zusätzliche Anmerkungen (z.B. Rundungsfehler, Beschreibung der Skala)
- Von SPSS generierte Tabellen sehen meist unschön aus
- Der Text sollte auf jede berichtete Tabelle rekurrieren
- Tabellen sollten auf den ersten Blick verständlich sein

INSTITUT FÜR KOMMUNIKATIONSWISSENSCHAFT UND MEDIENFORSCHUNG

Kreuztabellen: Aufgabe 1

- Kreuztabelle ja oder nein?
 - ☐ Zusammenhang zwischen Geschlecht und Fernsehnutzungdauer in Minuten
 - ☐ Zusammenhang zwischen Bildung und Besitz eines Fernsehgeräts (ja/nein)
 - ☐ Zusammenhang zwischen Parteipräferenz und Alter
 - ☐ Zusammenhang zwischen Geschlecht und Augenfarbe

Kreuztabellen: Aufgabe 2

• In einer Studie zur Mediennutzung (N = 59) wurde neben dem Fernsehtyp auch die Senderpräferenz (öffentlich-rechtliche vs. private Sender) der Befragten erhoben. Es ergibt sich folgende Kontingenztabelle:

	Fernsehtyp				
Senderpräferenz	Wenigseher	Durchschnittsseher	Vielseher		
Öffentlich-rechtlich	16	10	3		
privat	5	9	16		

- a) Ergänzen Sie die Randverteilungen der beiden Merkmale.
- b) Besteht ein Zusammenhang zwischen den beiden Merkmalen?
- c) Wie stark ist dieser Zusammenhang?